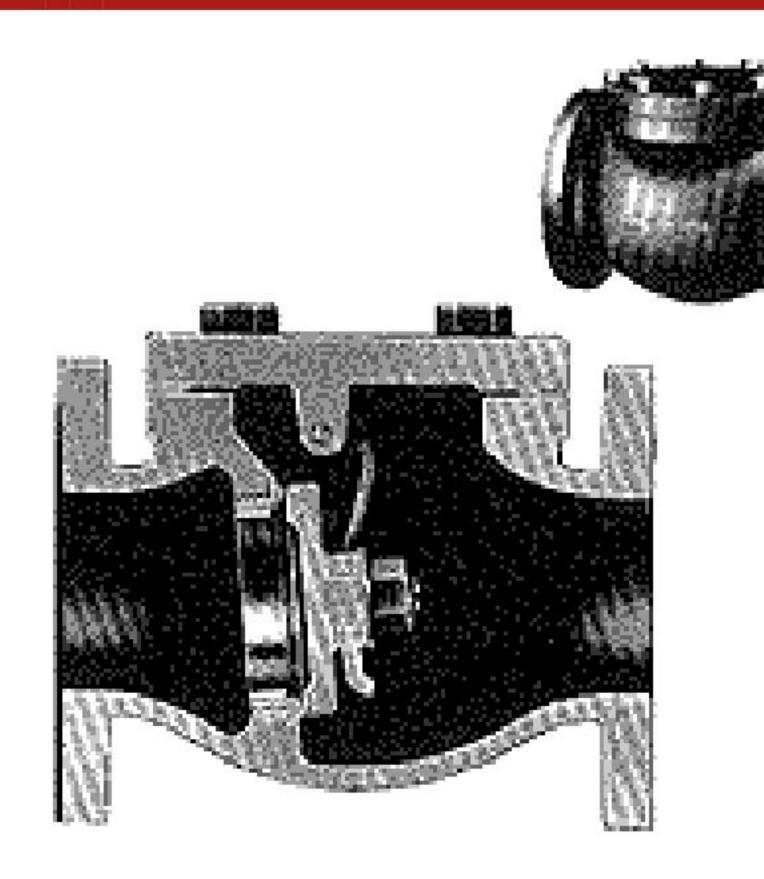


Swing check Flanged end Fig 1790 IBBM

Design provides full flow with minimum pressure loss and permits free action of the disc. Valves may be used in either horizontal or vertical lines. Two body-trim combinations: All-iron or IBBM. Bronze mounted (IBBM) models are recommended for use with oil, steam, water, air, gas, and other fluids that do not attack bronze. All-iron valves are for use with fluids which attack bronze but not iron.

Bodies and caps Close grained cast iron. Flanged or screw ends.

Trim for IBBM valves:


Discs and seat rings Solid bronze discs for 2" - 4"; iron with bronze facings on 5" and larger sizes.

<u>Disc carrier pins</u> Silicon bronze. Renewable. <u>Seat rings</u> Solid bronze Regrindable seating surfaces.

Principal Parts and Materials

Part	Fig/Sizes	Material	ASTM	
Body & Bonnet	All	Cast Iron	A-126	
Disc	1790 < 4 1790 > 5	Bronze Iron with Bronze facing ring	B-61 A-126 & B-61	
	1792	Cast Iron	A-126	
	1790	Silicon Bronze	B-371 Alloy 69700	
	1792	Steel	A-108 Grade 1018 & 1020	
Gasket	All	Non-Asbestos Sheet		

These valves comply with ANSI B16.1 and B2.1.

Swing check Flanged end Fig 1792 iron

Trim for all-iron valves:

<u>Discs and seat rings</u> Cast iron. Renewable. Disc carrier pins Steel. Renewable.

Flanges Valves conform to American Standard Face to Face Dimensions, Ferrous Flanged Valves (ANSI B16.10-1973) for 125 lb Cast Iron Swing Check Valves. Dimensions, drilling and facing of flanges conform to American Cast Iron Flange Standard, Class 125 (ANSI B16.1-1975). Valves are interchangeable, size for size, with all other standard makes of swing check valves.

Fig 1572 N-4

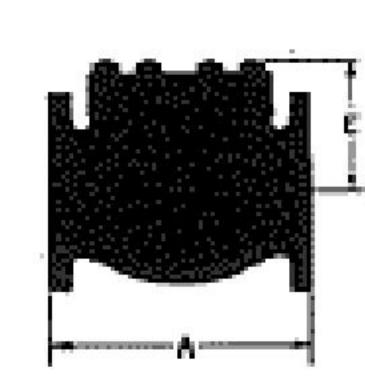
Designed for use in oil, pulp and paper, wood treating process industries where line material is corrosive to trim on iron or IBBM valves. Bodies are nickel iron, and trim is stainless steel. Can be used either vertically or horizontally.

Bodies and caps Corrosion-resistant 3% nickel iron alloy.

Discs 4" is corrosion-resistant 18-8 MO. All others 3% nickel iron with stainless steel face rings. Renewable.

Discs carriers Corrosion-resistant 18-8 MO (Type 316) stainless steel. Renewable.

Seat rings Corrosion-resistant 18-8 MO (Type 316) stainless steel. Renewable.


Principal Parts and Materials

Part	Fig/Sizes	Material	ASTM		
Body & Bonnet	All	3% Nickel Iron			
Disc	1572N < 4	18-8 MO stainless steel	A-351 Grade CF87		
	1572N > 5	3% Nickel Iron	A-182		
		18.8 MO stainless steel	Grade F316		
Disc Carrier	All	18-8 MO stainless steel	A351 Grade CF8M		
Seat Ring	All	18-8 MO stainless steel	A351 Grade CF8M		
Gasket	All	Non-Asbestos – Sheet			

These valves comply with ANSI B16.24 and MSS-SP-80

Dimensions in inches Weights in Pounds

Size	2	$2^{1}/_{2}$	3	4	5	6	8	10	12	14
Α	8	8 ¹ / ₂	$9^{1}/_{2}$	11 ¹ / ₂	13	14	· —	* <u>—</u> *		(2-10
E	5 ³ / ₁₆	4 ⁵ / ₁₆	6 ³ / ₄	8 ³ / ₁₆	8 ¹⁵ / ₁₆	9 ⁵ / ₈	11 ⁷ / ₈	13 ³ / ₁₆	15 ¹ / ₁₆	
Fig 1790 Wts	30.0	44.0	57.0	95.0	123.0	165.0	324.0	487.0	673.0	·—
Fig 1792 Wts	30.0	43.0	57.0	97.0		9 7 - 3 8	10—0	99 38	10-8	2
A	8	8 ¹ / ₂	9 ¹ / ₂	11 ¹ / ₂	13	14	19 ¹ / ₂	24 ¹ / ₂	27 ¹ / ₂	31
E	$3^{13}/_{16}$	$4^{3}/_{32}$	$4^{1}/_{2}$	5 ⁵ / ₁₆	6 ⁵ / ₁₆	$6^{27}/_{32}$	8 ¹⁵ / ₁₆	10 ⁹ / ₃₂	11 ¹⁵ / ₁₆	13 ¹³ / ₁₆
Fig 1572-N4 Wts	24	35	43	76	108	133	254	463	713	935

